3.2.16 \(\int \csc ^3(a+b x) \sin ^{\frac {7}{2}}(2 a+2 b x) \, dx\) [116]

Optimal. Leaf size=164 \[ -\frac {5 \text {ArcSin}(\cos (a+b x)-\sin (a+b x))}{4 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{4 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{2 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{3 b}+\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b} \]

[Out]

-5/4*arcsin(cos(b*x+a)-sin(b*x+a))/b-5/4*ln(cos(b*x+a)+sin(b*x+a)+sin(2*b*x+2*a)^(1/2))/b-5/3*cos(b*x+a)*sin(2
*b*x+2*a)^(3/2)/b+4/3*sin(b*x+a)*sin(2*b*x+2*a)^(5/2)/b+1/3*csc(b*x+a)^3*sin(2*b*x+2*a)^(9/2)/b+5/2*sin(b*x+a)
*sin(2*b*x+2*a)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {4385, 4393, 4386, 4387, 4391} \begin {gather*} -\frac {5 \text {ArcSin}(\cos (a+b x)-\sin (a+b x))}{4 b}+\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{2 b}-\frac {5 \sin ^{\frac {3}{2}}(2 a+2 b x) \cos (a+b x)}{3 b}+\frac {\sin ^{\frac {9}{2}}(2 a+2 b x) \csc ^3(a+b x)}{3 b}-\frac {5 \log \left (\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}+\cos (a+b x)\right )}{4 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^3*Sin[2*a + 2*b*x]^(7/2),x]

[Out]

(-5*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/(4*b) - (5*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]])
/(4*b) + (5*Sin[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(2*b) - (5*Cos[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/(3*b) + (4*Si
n[a + b*x]*Sin[2*a + 2*b*x]^(5/2))/(3*b) + (Csc[a + b*x]^3*Sin[2*a + 2*b*x]^(9/2))/(3*b)

Rule 4385

Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(e*Sin[a + b*
x])^m*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + p + 1))), x] + Dist[(m + 2*p + 2)/(e^2*(m + p + 1)), Int[(e*Sin[a
+ b*x])^(m + 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b,
 2] &&  !IntegerQ[p] && LtQ[m, -1] && NeQ[m + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 4386

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[2*Sin[a + b*x]*((g*Sin[c +
 d*x])^p/(d*(2*p + 1))), x] + Dist[2*p*(g/(2*p + 1)), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4387

Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[-2*Cos[a + b*x]*((g*Sin[c
+ d*x])^p/(d*(2*p + 1))), x] + Dist[2*p*(g/(2*p + 1)), Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fr
eeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4391

Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rule 4393

Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Dist[2*g, Int[Cos[a + b*x]*(g*S
in[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ
[p] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \csc ^3(a+b x) \sin ^{\frac {7}{2}}(2 a+2 b x) \, dx &=\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}+4 \int \csc (a+b x) \sin ^{\frac {7}{2}}(2 a+2 b x) \, dx\\ &=\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}+8 \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx\\ &=\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}+\frac {20}{3} \int \sin (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x) \, dx\\ &=-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{3 b}+\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}+5 \int \cos (a+b x) \sqrt {\sin (2 a+2 b x)} \, dx\\ &=\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{2 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{3 b}+\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}+\frac {5}{2} \int \frac {\sin (a+b x)}{\sqrt {\sin (2 a+2 b x)}} \, dx\\ &=-\frac {5 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{4 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{4 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{2 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{3 b}+\frac {4 \sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{3 b}+\frac {\csc ^3(a+b x) \sin ^{\frac {9}{2}}(2 a+2 b x)}{3 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.23, size = 84, normalized size = 0.51 \begin {gather*} \frac {-5 \left (\text {ArcSin}(\cos (a+b x)-\sin (a+b x))+\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right )\right )+2 \sqrt {\sin (2 (a+b x))} (6 \sin (a+b x)+\sin (3 (a+b x)))}{4 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^3*Sin[2*a + 2*b*x]^(7/2),x]

[Out]

(-5*(ArcSin[Cos[a + b*x] - Sin[a + b*x]] + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]) + 2*Sqrt
[Sin[2*(a + b*x)]]*(6*Sin[a + b*x] + Sin[3*(a + b*x)]))/(4*b)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 129.38, size = 973, normalized size = 5.93

method result size
default \(\text {Expression too large to display}\) \(973\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)^3*sin(2*b*x+2*a)^(7/2),x,method=_RETURNVERBOSE)

[Out]

32/5*(-tan(1/2*a+1/2*x*b)/(tan(1/2*a+1/2*x*b)^2-1))^(1/2)*(2*((tan(1/2*a+1/2*x*b)+1)*(tan(1/2*a+1/2*x*b)-1)*ta
n(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2)*(-tan(1/2*a+1/2*x*b))^(1/
2)*EllipticE((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*x*b)^4-((tan(1/2*a+1/2*x*b)+1)*(tan(1/2*a
+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2)*(-tan(1/2*
a+1/2*x*b))^(1/2)*EllipticF((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*x*b)^4-4*((tan(1/2*a+1/2*x
*b)+1)*(tan(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)
^(1/2)*(-tan(1/2*a+1/2*x*b))^(1/2)*EllipticE((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*x*b)^2+2*
((tan(1/2*a+1/2*x*b)+1)*(tan(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(
1/2*a+1/2*x*b)+2)^(1/2)*(-tan(1/2*a+1/2*x*b))^(1/2)*EllipticF((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))*tan(1/
2*a+1/2*x*b)^2+2*(tan(1/2*a+1/2*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/2*x*b)^6+2*((tan(1/2*a+1/2*x*b)+1
)*(tan(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2
)*(-tan(1/2*a+1/2*x*b))^(1/2)*EllipticE((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))-((tan(1/2*a+1/2*x*b)+1)*(tan
(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*(tan(1/2*a+1/2*x*b)+1)^(1/2)*(-2*tan(1/2*a+1/2*x*b)+2)^(1/2)*(-ta
n(1/2*a+1/2*x*b))^(1/2)*EllipticF((tan(1/2*a+1/2*x*b)+1)^(1/2),1/2*2^(1/2))+2*((tan(1/2*a+1/2*x*b)+1)*(tan(1/2
*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/2*x*b)^4-4*(tan(1/2*a+1/2*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2
)*tan(1/2*a+1/2*x*b)^4+2*((tan(1/2*a+1/2*x*b)+1)*(tan(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/
2*x*b)^2+2*(tan(1/2*a+1/2*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2)*tan(1/2*a+1/2*x*b)^2)/(tan(1/2*a+1/2*x*b)*(tan(1/2*
a+1/2*x*b)^2-1))^(1/2)/((tan(1/2*a+1/2*x*b)+1)*(tan(1/2*a+1/2*x*b)-1)*tan(1/2*a+1/2*x*b))^(1/2)/(tan(1/2*a+1/2
*x*b)^3-tan(1/2*a+1/2*x*b))^(1/2)/(tan(1/2*a+1/2*x*b)-1)/(tan(1/2*a+1/2*x*b)+1)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(7/2),x, algorithm="maxima")

[Out]

integrate(csc(b*x + a)^3*sin(2*b*x + 2*a)^(7/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.19, size = 280, normalized size = 1.71 \begin {gather*} \frac {8 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{2} + 5\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} \sin \left (b x + a\right ) + 10 \, \arctan \left (-\frac {\sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} {\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) - 10 \, \arctan \left (-\frac {2 \, \sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) + 5 \, \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{3} - {\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right )}{16 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(7/2),x, algorithm="fricas")

[Out]

1/16*(8*sqrt(2)*(4*cos(b*x + a)^2 + 5)*sqrt(cos(b*x + a)*sin(b*x + a))*sin(b*x + a) + 10*arctan(-(sqrt(2)*sqrt
(cos(b*x + a)*sin(b*x + a))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x + a))/(cos(b*x + a)^2 + 2*cos
(b*x + a)*sin(b*x + a) - 1)) - 10*arctan(-(2*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a)) - cos(b*x + a) - sin(b*x
+ a))/(cos(b*x + a) - sin(b*x + a))) + 5*log(-32*cos(b*x + a)^4 + 4*sqrt(2)*(4*cos(b*x + a)^3 - (4*cos(b*x + a
)^2 + 1)*sin(b*x + a) - 5*cos(b*x + a))*sqrt(cos(b*x + a)*sin(b*x + a)) + 32*cos(b*x + a)^2 + 16*cos(b*x + a)*
sin(b*x + a) + 1))/b

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)**3*sin(2*b*x+2*a)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3*sin(2*b*x+2*a)^(7/2),x, algorithm="giac")

[Out]

integrate(csc(b*x + a)^3*sin(2*b*x + 2*a)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\sin \left (2\,a+2\,b\,x\right )}^{7/2}}{{\sin \left (a+b\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(2*a + 2*b*x)^(7/2)/sin(a + b*x)^3,x)

[Out]

int(sin(2*a + 2*b*x)^(7/2)/sin(a + b*x)^3, x)

________________________________________________________________________________________